
Getting started with Puppet

Jeremy MATHEVET
12/09/2012

Topics

 Configuration management
 Puppet Installation
 Puppetmaster
 Puppet language basics
 Puppet language advanced

Configuration management

Puppet, Chef, Cfengine

Definition

Configuration Management is the
process of standardizing resource
configurations and enforcing their state
across IT infrastructure in an automated
yet agile manner.

— Puppet Labs

Configuration management

Why do we need it
Configuration management

 Heterogeneous Operating Systems
 Servers profusion
 Increasing deployment needs

 Cloud

Different solutions
Configuration management

3 ways for deploying software to the SI

Manually
 Could take very long time

By scripts
 Could be quite tricky

 Multi-environment case

By configuration management software

Configuration management software
Configuration management

Pros :
 Centralized management
 Automated management
 Mass deployment
 Configuration customization
 Abstraction layer
 Idempotence
 “DevOps ready”

Principle
Configuration management

 A client/server
architecture.

 The server has a reference
configuration.

 The client queries the
server.

 The client makes change in
order to match the
reference configuration.

Principle
Configuration management

1. Pull Request

2. Reference configuration

3. Operations

4. (optionnal) Message code / error

Principle
Configuration management

 Revision control used to keep a trace of config
revisions

 Not mandatory but hugely recommended
 Encrypted connection

Version control and security

Principle
Configuration management

 File transfer
 File edition
 Service management
 Package management
 Mount points management
 Cron management
 VLAN management
 Command launching
 …

What you can do

Comparison
Configuration management

 Puppet
 The most popular
 Easiest solution

 Chef
 Puppet fork
 Still young but very promising

 CFEngine
 The first CM software
 The most resource effective
 More complex

3 major solutions :

Comparison
Configuration management

Timeline :

Comparison
Configuration management

Some differences

Technology Ruby Ruby C

Configuration Dedicated
langage

Ruby Dedicated
langage

Configuration
method Plain text files

Plain text files
CLI tool
Web UI

Plain text files

Licence Apache Apache GPL

Comparison
Configuration management

Some similarit ies

 Same origin
 Specially designed for config

management
 Client/server model

 Standalone mode possible
 CLI interface
 Need to increase your

competence

Configuration management

Do you have any questions ?

Puppet Installation

Install && setup

Puppet
Puppet Installation

 Created in 2006 by Puppet Labs
 Latest version : 3.0.0
 The easiest solution
 Dedicated declarative language

 Inspired by Ruby
 Modular configuration
 System profiling with Facter
 Template support
 Asymmetric Key Encryption

Some details and features

Puppet
Puppet Installation

 Prerequisite
 Configured DNS
 Ruby

 Installation sources :
 Distribution repositories
 RubyGem
 Sources

Prerequisite and sources

Puppet
Puppet Installation

Puppet server : Puppetmaster

Puppet client : Puppet (agent)

Main steps once installed :
 Puppet agent installation on client hosts (also called a node).

 Enter the server FQDN into /etc/puppet/puppet.conf
 The agent checks every 30 mn by default

 Certificate generation
 CSR for the node generated on the puppetmaster during

the first agent request

Client and server

Working with Puppetmaster
Puppet Installation

Working with Puppet CA

[root@puppetmaster ~]# puppetca --sign fqdn.utopia.net

Options Definitions

--sign

--list

--all

--clean

Sign the certificate request for the following host

List certificate request

Used with --sign, sign all certificate request

Remove all files related to the host from the CA

--print

--revoke

Print the full text version of a host’s certificate

Remove all files related to the host from the CA

Puppet Installation

Do you have any questions ?

Puppetmaster

Puppetmaster said…

Puppet

One important thing

Infrastructure is code.

Puppetmaster

Definition

Manifest – Puppet programs are called
« manifests » . They use the .pp file
extension. These programs contain one or
more class.

Puppetmaster

Puppet configuration tree

 puppet.conf
 General Puppetmaster settings

 auth.conf
 General ACL

 fileserver.conf
 ACL for the Puppet fileserver

 manifests directory
 site.pp : global defaults

configuration
 nodes.pp : manage hosts

Configuration f i les overview 1/2

Puppetmaster

Puppet configuration tree

 modules directory
 Contain one subdirectory per

module
 manifests/init.pp

 The module code
 The best way to use Puppet

 templates directory
 The default directory which contains

templates.

Configuration fi les overview 2/2

Puppetmaster

Puppet configuration files

[main]
logdir=/var/log/puppet
vardir=/var/lib/puppet
ssldir=/var/lib/puppet/ssl
rundir=/var/run/puppet
factpath=$vardir/lib/facter
templatedir=$confdir/templates
server=debiantest.decilex.net
downcasefacts = true

puppet.conf

Puppetmaster

Puppet configuration files

node basenode {

include ssh

include ntp

}

node 'test.utopia.net' inherits basenode {

include nagios

}

manifests/nodes.pp

 Skeleton :
 node ‘fqdn’ { include

module}

 Node declaration
 Module inclusion

 Inheritance

Puppetmaster

Puppet configuration files

Reading order

manifests/site.pp

manifests/nodes.pp

modules/$nomdumodule/manifests/init.pp

modules/$nomdumodule/files/

Puppetmaster

Do you have any questions ?

Puppetmaster

Puppet language basics

Puppet, Chef, Cfengine

Puppet

The declarative language
Puppet language basics

 With Puppet, we declare how the node
must be.

 Everything you want to manage have to
be explicitly declared.

 A Puppet program is called a manifest
 Central manifest : site.pp
 Puppet load modules manifests

 Into manifests, we define classes.
 We write resources inside these

classes

About the language

The declarative language

 The fundamental unit of modeling
 Like a “function”

 Inside, a series of attributes and their values
 Resources types and attributes are predefined by Puppet
 List of available resources

 http://docs.puppetlabs.com/references/stable/type.html
 Skeleton

 Ressource-name { ‘title’ : attribute = value }

Resources

Puppet language basics

http://docs.puppetlabs.com/references/stable/type.html

Resources

 Manage files
 Content
 Permissions
 Ownership


 Source attribute
 Copy a file from the Puppetmaster to the node
 puppet:/// followed by the relative source of the file

placed in /etc/puppet/modules/module-name/files/

File

file { '/etc/passwd':
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => ‘puppet:///base/passwd‘
 }

file { '/etc/passwd':
 owner => 'root',
 group => 'root',
 mode => '0644',
 source => ‘puppet:///base/passwd‘
 }

Puppet language basics

Resources

 Manage packages
 Wide provider support

 APT
 Aptitude
 YUM
 And more..

 Install, upgrade, uninstall packages
 The last or defined package version

Package package { ‘openssh-server’:
 ensure => installed
}

package { ‘openssh-server’:
 ensure => installed
}

package { ‘openssh-server’:
 ensure => latest
}

package { ‘openssh-server’:
 ensure => latest
}

package { ‘openssh-server’:
 ensure => absent
}

package { ‘openssh-server’:
 ensure => absent
}

Puppet language basics

Resources

 Manage services
 Wide provider support

 Init
 Systemd
 Upstart
 And more…

 Start, stop, restart, start on boot (enable) services

Service

service { ‘snmpd’:
 ensure => running,
 enable => true,
 hasrestart => true,
 hasstatus => true
}

Puppet language basics

Do you have any questions ?

Puppet language basics

Puppet language advanced

Dive into Puppet

Puppet

Facter
Puppet language advanced

 Software used by Puppet
 Installed on nodes
 Collect various data, "facts",

on node
 Many facts already defined by

Facter
 Possibility to create your

own facts

The system profi ler

~ # facter
architecture => i386
domain => utopia.net
facterversion => 1.5.7
fqdn => debiantest.utopia.net
hardwaremodel => i686
hostname => debiantest
id => root
[…]

~ # facter
architecture => i386
domain => utopia.net
facterversion => 1.5.7
fqdn => debiantest.utopia.net
hardwaremodel => i686
hostname => debiantest
id => root
[…]

Variables

 Begin by $
 Can use facts or you

own defined
variables

 Often used with
conditional
statements

 Case statement
 If statement

Variables into classes

case $operatingsystem {
 centos, redhat: { $service_name = 'ntpd' }
 debian, ubuntu: { $service_name = 'ntp' }
 }

service { 'ntp':
 name => $service_name,
 ensure => running,
 enable => true
}

case $operatingsystem {
 centos, redhat: { $service_name = 'ntpd' }
 debian, ubuntu: { $service_name = 'ntp' }
 }

service { 'ntp':
 name => $service_name,
 ensure => running,
 enable => true
}

Puppet language advanced

Conditional statements

 Based on
 the truth value

of a variable
 the value of an

expression
 The truth of an

arithmetic
expression

If/Elsif/Else Statement

if $server == 'mongrel' {
 include mongrel
 } elsif $server == 'nginx' {
 include nginx
 } else {
 include thin
 }

if $server == 'mongrel' {
 include mongrel
 } elsif $server == 'nginx' {
 include nginx
 } else {
 include thin
 }

if $variable {
 file { '/some/file': ensure => present }
 } else {
 file { '/some/other/file': ensure => present }
 }

if $variable {
 file { '/some/file': ensure => present }
 } else {
 file { '/some/other/file': ensure => present }
 }

if $ram > 1024 {
 $maxclient = 500
 }

if $ram > 1024 {
 $maxclient = 500
 }

Puppet language advanced

Expressions

 Operators usable in if statements
 Boolean expressions

 And, or, not
 Comparison expressions

 == =! < > <= > >=
 Arithmetic expressions

 + - / * >> (left shift) << (right shift)
 Regular expressions

 =~ !~
 “in” expressions

 allows to find if the left operand is in the right one.

Operators

Puppet language advanced

Templates

 Permit to have
personalized
configuration per node

 Use ERB language
 Retrieve and use

facts
 Use file resource

 ERB file
placed in
module
template
directory

Personalized text f i les

<%= ipadress %> <%fqdn> <%hostname><%= ipadress %> <%fqdn> <%hostname>

file {"hosts":
 path => "/etc/hosts",
 owner => root,
 group => root,
 mode => 644,
 content => template("base/hosts.erb")
}

file {"hosts":
 path => "/etc/hosts",
 owner => root,
 group => root,
 mode => 644,
 content => template("base/hosts.erb")
}

Puppet language advanced

Resources relationship

 before
 Resource is applied before the target resource

 require
 Resource is applied after the target resource

 notify
 Like before + The target resource will refresh if the

notifying resource changes
 subscribe

 Like require + The subscribing resource will refresh if the
target resource changes.

Relationship meta-parameters

Puppet language advanced

Resources relationship

package { 'openssh-server':
 ensure => present,
 before => File['/etc/ssh/sshd_config'],
 }

package { 'openssh-server':
 ensure => present,
 before => File['/etc/ssh/sshd_config'],
 }

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => 600,
 source => 'puppet:///modules/sshd/sshd_config',
 require => Package['openssh-server'],
 }

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => 600,
 source => 'puppet:///modules/sshd/sshd_config',
 require => Package['openssh-server'],
 }

Ordering relationship

These two examples are mutually-exclusive

Puppet language advanced

Resources relationship

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => 600,
 source => 'puppet:///modules/sshd/sshd_config',
 notify => Service['sshd']
 }

file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => 600,
 source => 'puppet:///modules/sshd/sshd_config',
 notify => Service['sshd']
 }

service { 'sshd':
 ensure => running,
 enable => true,
 subscribe => File['/etc/ssh/sshd_config‘]
 }

service { 'sshd':
 ensure => running,
 enable => true,
 subscribe => File['/etc/ssh/sshd_config‘]
 }

Notif ication relationship

These two examples are mutually-exclusive

Puppet language advanced

Resources relationship

 Ordering resources
 The resource on the left is applied

before the resource on the right.
 ->

 Refreshing
 Kind of trigger
 Restart a service after a file update
 ~>

Chaining and refreshing

ntp.conf is applied first, and will notify the ntpd service if it changes:
File['/etc/ntp.conf'] ~> Service['ntpd']
ntp.conf is applied first, and will notify the ntpd service if it changes:
File['/etc/ntp.conf'] ~> Service['ntpd']

Puppet language advanced

Do you have any questions ?

Puppet language advanced

Puppet Language
advanced

Puppet Language
advanced

Configuration
management

Configuration
management Puppet installationPuppet installation

PuppetmasterPuppetmaster

Summary

Puppet language
basics

Puppet language
basics

Puppet

Contact

Jeremy MATHEVET
@Jeyg

Content under Creative Commons BY 3.0 License

	Slide6
	Slide40
	Slide4
	Slide88
	Slide89
	Slide97
	Slide91
	Slide92
	Slide93
	Slide94
	Slide95
	Slide 12
	Slide99
	Slide98
	Slide101
	Slide56
	Slide42
	Slide102
	Slide103
	Slide105
	Slide86
	Slide65
	Slide108
	Slide111
	Slide113
	Slide109
	Slide117
	Slide110
	Slide114
	Slide115
	Slide131
	Slide118
	Slide125
	Slide119
	Slide116
	Slide120
	Slide121
	Slide132
	Slide122
	Slide123
	Slide124
	Slide128
	Slide129
	Slide126
	Slide140
	Slide142
	Slide143
	Slide127
	Slide133
	Slide28
	Slide 51

